KNOWLEDGE QUESTIONS:

"Science is best defined as a careful, disciplined, logical search for knowledge about any and all aspects of the universe, obtained by examination of the best available evidence and always subject to correction and improvement upon discovery of better evidence. What's left is magic. And it doesn't work." -James Randi



Kellar_levitation_poster.jpg


What is so great about Science anyway?

FEYNMAN65.JPG


The things with which we concern ourselves in science appear in myriad forms, and with a multitude of attributes. For example, if we stand on the shore and look at the sea, we see the water, the waves breaking, the foam, the sloshing motion of the water, the sound, the air, the winds and the clouds, the sun and the blue sky, and light; there is sand and there are rocks of various hardness and perma­nence, color and texture. There are animals and seaweed, hunger and disease, and the observer on the beach; there may be even happiness and thought. Any other spot in nature has a similar variety of things and influences. It is always as complicated as that, no matter where it is. Curiosity demands that we ask questions, that we try to put things together and try to understand this multitude of aspects as perhaps resulting from the action of a relatively small number of elemental things and forces acting in an infinite variety of combinations.

For example: Is the sand other than the rocks? That is, is the sand perhaps nothing but a great number of very tiny stones? Is the moon a great rock? If we understood rocks, would we also understand the sand and the moon? Is the wind a sloshing of the air analogous to the sloshing motion of the water in the sea? What common features do different movements have? What is common to different kinds of sound? How many different colors are there? And so on. In this way we try gradually to analyze all things, to put together things which at first sight look different, with the hope that we may be able to reduce the number of different things and thereby understand them better.

A few hundred years ago, a method was devised to find partial answers to such questions. Observation, reason, and experiment make up what we call the scientific method. We shall have to limit ourselves to a bare description of our basic view of what is some­times called fundamental physics, or fundamental ideas which have arisen from the application of the scientific method.

What do we mean by "understanding" something? We can imagine that this complicated array of moving things which constitutes "the world" is something like a great chess game being played by the gods, and we are observers of the game. We do not know what the rules of the game are; all we are allowed to do is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few of the rules. The rules of the game are what we mean by fundamental physics. Even if we knew every rule, however, we might not be able to understand why a particular move is made in the game, merely because it is too complicated and our minds are limited. If you play chess you must know that it is easy to learn all the rules, and yet it is often very hard to select the best move or to understand why a player moves as he does. So it is in nature, only much more so; but we may be able at least to find all the rules. Actually, we do not have all the rules now. (Every once in a while something like castling is going on that we still do not understand.) Aside from not knowing all of the rules, what we really can explain in terms of those rules is very limited, because almost all situations are so enormously complicated that we cannot follow the plays of the game using the rules, much less tell what is going to happen next. We must, therefore, limit ourselves to the more basic question of the rules of the game. If we know the rules, we consider that we "understand" the world.
Selection from Richard Feynman
Six Easy Pieces: Essentials of Physics, 1995

Chess Game Activity

Let's play chess. Two of us who know chess can play a game. The rest of us will observe. If you don't know how to play chess, see if you can figure out some of the rules through observation. If you already know how to play, see if you can explain why a player makes a particular move. Do you have a guess as to why a player makes a particular move based on the game you see and understand? How does this observation relate to the Scientific Method?












Lesson 1: The Scientific Method


Lesson 2: Science vs. Pseudo-science


Lesson 3: Homeopathy Case Study


Lesson 4: Human Generated Global Climate Change Case Study


Natural Sciences WOK Vocabulary:

Anomaly, Conjectures and refutations, Controlled experiment, Empirical, Empiricist, Falsification, Hypothesis, Law, Theory, Logical positivism, Paradigm, Physics envy, Principle of simplicity, Occam's Razor, Pseudo-science, Rationalist, Relativism, Science worship, Scientism, induction, hypothesis, law, theory, conjecture, refutation,

TOK Lexicon of all our vocabulary